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ABSTRACT 

This paper suggests an algorithm for estimating driver’s cognitive 

workload complexity using driving performance and 

physiological data. The algorithm adopts radial basis probabilistic 

neural networks (RBPNN) to construct estimation models. In this 

study, combinations of two driving performance data including 

standard deviation of lane position (SDLP) and steering wheel 

reversal rate (SRR), and two physiological signals including heart 

rate (HR) and skin conductance level (SCL) were considered as 

measures of cognitive workload. Data for training and testing the 

RBPNN models were collected in a driving simulator in which 

fifteen participants drove through a highway and were asked to 

complete auditory recall tasks which consist of three levels of 

difficulty. The best performing model, which uses SDLP and SCL 

data over a 20s-window, could identify four graded levels of 

cognitive workload with an average accuracy of 85.6%. The 

results demonstrated that the model using SDLP and SCL was 

outperforming than the other combinations among performance 

and physiological measures. 
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1. INTRODUCTION 
Identification of a driver’s workload and spare capacity is crucial 

in the design of adaptive automotive user interface [1]. By 

monitoring driver’s workload, the adaptive interface system can 

provide timely and affordable information when the driver has the 

spare capacity to understand and respond to it. 

Workload refers to the amount of resources that is required to 

perform a particular task. Two major types of driving workload 

are visual and cognitive workload [2]. Visual workload is 

straightforward, but cognitive workload is difficult to measure 

directly because it is essentially internal to the driver [3]. 
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Nevertheless, there have been efforts to measure cognitive 

workload using subjective measures, physiological measures [4], 

eye movement measures [5], and driving performance measures 

[1]. Among those measures, driving performance measures can 

detect the cognitive workload using easy and less expensive 

methods through readily available in-vehicle information [6]. 

However, driving performance measures are known to have 

limitations compared to others due to small changes according to 

the cognitive workload. That is, the performance measures are 

able to detect a high cognitive workload condition, but their 

classification accuracy is not enough to distinguish three levels of 

cognitive difficulty, which were applied in this study as secondary 

tasks to add cognitive workload [7]. 

In the meantime, physiological measures have been proposed as 

useful metrics for assessing workload in the user interface design 

and optimization process [3]. Mehler et al. found that when the 

three levels of task difficulty were randomly ordered, and a 

recovery interval was provided between tasks, a near linear 

increase in heart rate and skin conductance appeared across the 

demand levels [3]. For both heart rate and skin conductance, each 

task level was statistically differentiated from single task driving 

and from each other. These findings demonstrate that both heart 

rate and skin conductance provide the sensitivity to discriminate 

incremental changes in cognitive workload. 

Thus, this paper suggested an algorithm for estimating driver’s 

cognitive workload using driving performance and physiological 

data, especially the standard deviation of lane position (SDLP) 

and steering wheel reversal rate (SRR) among performance 

measures, and heart rate (HR) and skin conductance level (SCL) 

in physiological data. The results demonstrated that the 

combination of performance and physiological data, especially 

SDLP and SCL, can be effectively used as inputs of cognitive 

estimation models which can distinguish driving only and three 

levels of dual task conditions at the high accuracy rate. 

2. MEASURES AND MODELS FOR 

COGNITIVE LOAD ESTIMATION 

2.1 Driving Performance Measures 
Some studies have shown that cognitive distraction undermines 

driving performance by disrupting the allocation of visual 

attention to the driving scene and the processing of attended 

information. Consequently, cognitive workload leads to 

significantly reduced lane keeping variation and increased 

response times to sudden obstacles. In this paper, therefore, lateral 

controllability was used as driving performance measures under 



cognitive workload. The lateral position variation and steering 

wheel activity were selected to assess lateral controllability. 

2.1.1 Lateral position variation 
Lateral position variation is one of the most commonly used 

driving behavior metrics. Reduced variation in lateral position 

when engaged with a cognitive task could be interpreted as a 

symptom of driver overload and increased risk of incorrect 

decisions. Lateral position variation can be calculated as the 

standard deviation of lateral position (SDLP). In this paper, a high 

pass filter with 0.1 Hz cut off frequency is applied on lane 

position data to reduce dependency of data length. 

2.1.2 Steering wheel activity 
Cognitive secondary tasks yield increased steering activity. The 

increase is mainly in smaller steering wheel movements, the 

majority of which are smaller than 1 degree. The steering wheel 

reversal rate can be used for measuring the increase of smaller 

steering wheel movements. It is defined as the number, per minute, 

of steering wheel reversals larger than a certain minimum angular 

value, i.e. 0.1 degree. 

2.2 Physiological Measures 
In some situations physiological indices may be more sensitive 

than performance-based measures for detecting initial changes in 

mental workload [3-4]. That is, physiological measures may show 

increased activation before the appearance of significant 

performance decrements. Mehler et al. selected heart rate and skin 

conductance (sweat gland activity) as primary measures of interest, 

because those measures can indicate changes or differences in 

relative workload before, or in the absence of, significant 

performance-level effects [3]. 

2.2.1 Cardiovascular activity 
Basic cardiovascular measures (heart rate and blood pressure) 

have been shown to increase with escalating cognitive demand or 

workload in a range of environments [8-9]. Brookhuis and De 

Waard [9] reported that heart rate increased with heightened task 

demand, such as entering a traffic circle, and dropped as task 

demands decreased, for instance, driving on a two-lane highway. 

Thus, heart rate, the number of heart beats per unit time, usually 

per minute, was selected as a physiological measure to estimate 

cognitive workload complexity. 

2.2.2 Electrodermal activity 
Electrodermal activity (EDA) refers to the electrical changes in 

the skin and can be distinguished in tonic and phasic activity. 

Tonic EDA, the Electrodermal Level (EDL) or Skin Conduction 

Level (SCL), is the average level of EDA or baseline activity. 

Phasic EDA includes the Electrodermal Response (EDR), which 

is most similar to the formerly common measure Galvanic Skin 

Resistance (GSR). Mehler et al. suggested that skin conductance 

clearly documented a change in physiological arousal associated 

with the increasing complexity of auditory n-back tasks [3], 

although these findings are contrasted with the HASTE project 

findings, which found skin conductance is sensitive to increases in 

visual but not auditory secondary tasks during simulation [8]. 

2.3 Radial-basis Probabilistic Neural Network 

Models 
Radial basis probabilistic neural networks (RBPNN) are applied 

for estimating driver’s cognitive workload using driving 

performance and physiological measures. It is known that 

RBPNNs are suitable for classification problems such as cognitive 

workload complexity estimation. When an input is presented, the 

first layer computes distances from the input vector to the training 

input vectors, and produces a vector whose elements indicate how 

close the input is to a training input. The second layer sums these 

contributions for each class of inputs to produce as its net output a 

vector of probabilities. Finally, a complete transfer function on the 

output of the second layer picks the maximum of these 

probabilities, and produces a 1 for that class and a 0 for the other 

classes. 

3. MODEL CONSTRUCTION  

3.1 Data Source   

3.1.1 Experimental setup  
The experiment was conducted in the DGIST fixed-based driving 

simulator, which incorporated STISIM Drive™ software and a 

fixed car cab. The virtual roadway was displayed on a 2.5m by 

2.5m wall-mounted screen at a resolution of 1024 x 768. Sensory 

feedback to the driver was also provided through auditory and 

kinetic channels. Distance, speed, steering, throttle, and braking 

inputs were captured at a nominal sampling rate of 30 Hz. 

Physiological data were collected using a MEDAC System/3 unit 

and NeuGraph™ software (NeuroDyne Medical Corp., 

Cambridge, MA). A display was installed on the screen beside the 

rear-view mirror to provide information about the elapsed time 

and the distance remaining in the drive. 

3.1.2 Subject 
Subjects were required to meet the following criteria: age between 

25-35, drive on average more than twice a week, be in self-

reported good health and free from major medical conditions, not 

take medications for psychiatric disorders, score 25 or greater on 

the mini mental status exam [11] to establish reasonable cognitive 

capacity and situational awareness, and have not previously 

participated in a simulated driving study. The sample consisted of 

15 males, who are in the 25-35 age range (M=27.9, SD=3.13). 

3.1.3 Cognitive workload 
An auditory delayed digit recall task was used to create periods of 

cognitive demand at three distinct levels. This form of n-back task 

requires participants to say out loud the nth stimulus back in a 

sequence that is presented via audio recording [11]. The lowest 

level n-back task is the 0-back where the participant is to 

immediately repeat out loud the last item presented. At the 

moderate level (1-back), the next-to-last stimuli is to be repeated. 

At the most difficult level (2-back), the second-to-the-last 

stimulus is to be repeated. The n-back was administered as a 

series of 30 second trials consisting of 10 single digit numbers (0-

9) presented in a randomized order at an inter-stimulus interval of 

2.1 seconds. Each task period consisted of a set of four trials at a 

defined level of difficulty resulting in demand periods that were 

each two minutes long. 

3.1.4 Procedure 
Following informed consent and completion of a pre-experimental 

questionnaire, participants received 10 minutes of driving 

experience and adaptation time in the simulator. The simulation 

was then stopped and participants were trained in the n-back task 

while remaining seated in the vehicle. N-back training continued 



until participants met minimum performance criteria. Performance 

on the n-back was subsequently assessed at each of the three 

demand levels with 2 minute breaks between each level. When the 

simulation was resumed, participants drove in good weather 

through 37km of straight highway. Minutes 5 through 7 were used 

as a single task driving reference (baseline). Thirty seconds later, 

18 seconds of instructions introduced the task (0, 1 or 2-back). 

Each n-back period was 2 minutes in duration (four 30 second 

trials). Two minute rest/recovery periods were provided before 

presenting instructions for the next task. Presentation order of the 

three levels of task difficulty was randomized across participants. 

3.2 Model Characteristics and Training 

3.2.1 Definition of cognitive workload 
The cognitive workload was classified into four categories based 

on primary and secondary task complexity. The secondary tasks, 

so called n-back tasks, have three levels of difficulty. The 0-back 

task is a low-level cognitive challenge, but it is not particularly 

difficult and was not intended to be significantly stressful. The 1-

back condition requires an additional step up in cognitive load in 

that the individual must both correctly recall from short-term 

memory the item presented previously as well as entering and 

holding the new item in memory. It was expected that the 1-back 

would have moderate impact on individuals. The 2-back form of 

the task requires highest cognitive load to recall from short-term 

memory within the n-back tasks. 

3.2.2 Input features 
Two driving performance measures, standard deviation of lane 

position (SDLP) and steering wheel reversal rate (SRR), and two 

physiological data, Heart Rate (HR) and Skin Conductance Level 

(SCL), were considered as input features to estimate the levels of 

driver’s cognitive workload in the RBPNN models. 

SDLP was calculated from 0.1 Hz high pass filtered lateral 

position data with removing lane changes using the AIDE project 

guidelines. SRR was calculated by counting the number of 

steering wheel reversal from the 2Hz low pass filtered steering 

wheel angle data per minute. For cognitive workload, the reversal 

angles, which have more than 0.1 degree of the gap size, were 

counted. 

HR was converted from Inter-beat Interval (IBI) which was 

calculated after removing irregular distance between peaks, 

irregular peak form, and presence of low-frequency component in 

ECG using the Librow`s R-peaks detection algorithm (LibrowTM, 

Ukraine). SCL was measured with a constant current 

configuration and non-polarizing, low-impedance gold-plated 

electrodes. Sensors were placed on the underside of the outer 

flange of the middle fingers of the non-dominant hand without gel. 

3.2.3 Summarizing parameters 
In this paper, window size was considered as the summarizing 

parameter for the inputs. Window size denotes the period over 

which performance and physiological data were averaged. The 

comparisons of window size could identify the appropriate length 

of data that can be summarized to reduce the noise of the input 

data without losing useful information. This paper considered 

three window sizes: 10, 20 and 30 seconds. 

3.2.4 Model training and testing 
Radial basis probabilistic neural networks (RBPNN) were used to 

construct the driver’s cognitive workload estimation models. In 

this paper, the models were trained using the NEWPNN function 

in MATLAB. For training and testing RBPNN models, data of 

four task periods, which consist of a single task (driving only 

condition) and three dual tasks (n-back task condition), were used. 

A task was divided into multiple segments based on window size. 

For example, if the model uses 30s window, one task period 

divided into four segments as shown in Figure 1. In the same 

manner, 20s window set has six segments and 10s window set has 

twelve. In each task, half of the segments, i.e. two segments per 

subject in 30s window, were used for training and the other 

segments were used for testing. Thus, each neural net was trained 

and tested using different sets of measurements, i.e. 15x2, 15x3 

and 15x6 examples for 30s, 20s and 10s window, respectively. 

Since the estimator is always evaluated on the data disjoint from 

the training data, the performance evaluated through the cross 

validation scheme correctly reflects the actual generalization 

capability of the derived estimator [6]. Model performance was 

evaluated with testing accuracy, which is the ratio of the number 

of instances correctly identified by the model to the total number 

of instances in the testing set. 

4. RESULT AND DISCUSSION 
The performance of the RBPNN models varies from the combined 

input features and window sizes. Among different combinations 

of inputs, i.e. SDLP, SRR, HR and SCL, the performance using 

SCL only and SCL and SDLP outperformed as shown in Table 1.  

Tasks

Segments

(Window Size)

Training

& Test

Segments

 = Train  = Test

Baseline Task 1 Rest Task 2 Rest Task 3

Not Used Not Used

Not Used Not Used

 

 

 

Table 1. Model performance with different window size 

HR

SCL
SCL

SDLP

SCL

SDLP

 HR

SRR

 SCL

SRR

HR

Baseline 55.6 54.4 65.6 94.4 86.7 32.2 71.1 32.2

0-Back 44.4 17.8 52.2 74.4 70.0 32.2 60.0 32.2

1-Back 55.6 50.0 60.0 84.4 86.7 34.4 71.1 34.4

2-Back 43.3 8.9 57.8 82.2 90.0 31.1 64.4 31.1

Average 49.7 32.8 58.9 83.9 83.3 32.5 66.7 32.5

Baseline 60.0 64.4 64.4 93.3 91.1 26.7 51.1 26.7

0-Back 42.2 33.3 33.3 80.0 73.3 28.9 57.8 28.9

1-Back 35.6 11.1 57.8 86.7 86.7 20.0 37.8 20.0

2-Back 37.8 24.4 53.3 82.2 91.1 33.3 46.7 33.3

Average 43.9 33.3 52.2 85.6 85.6 27.2 48.3 27.2

Baseline 66.7 76.7 63.3 90.0 90.0 33.3 63.3 50.0

0-Back 30.0 20.0 50.0 80.0 70.0 33.3 50.0 30.0

1-Back 40.0 26.7 53.3 83.3 86.7 36.7 33.3 30.0

2-Back 20.0 36.7 46.7 86.7 90.0 33.3 56.7 33.3

Average 39.2 40.0 53.3 85.0 84.2 34.2 50.8 35.8

Driving & Physiology (Combination) 

10s

20s

30s

Physiology

All

Driving

Perfor-

mance

 

Figure 1. Allocation of Segments to Training and Testing Sets 



Due to the fact that skin conductance clearly changed in 

physiological arousal associated with the levels of cognitive load 

complexity, the best performance appeared when the models have 

SCL as an input feature. Although SCL model and SCL-SDLP 

model have same performance on average, SCL-SDLP model 

outperforms classifying the highest cognitive workload which 

must be detected correctly. The best performing model, which 

uses SDLP and SCL data over a 20s-window, could identify four 

graded levels of cognitive workload with an average accuracy of 

85.6%. With this model, the estimation accuracy rate of driving 

only criteria, i.e. no cognitive workload condition, was 91.1%, 

and under cognitive workload criteria the accuracy of the lowest, 

moderate, and the most difficult cognitive load estimation were 

73.3%, 86.7%, and 91.1%, respectively. 

The results demonstrated that the model using SDLP and SCL 

was outperforming than the other combinations among 

performance and physiological measures. The main contributor of 

the high accuracy rate in this model was skin conductance level, 

which provides clear changes associated with difficult level of 

cognitive workload, but relatively lower threshold to distinguish 

higher mental workload. According to Mehler et al., the additional 

increases in skin conductance between the 1-back and 2-back 

were minimal and not statistically significant. The near flattening 

of the response curve for all physiological measures during the 1-

back and 2-back tasks may indicate that a threshold had been 

reached relative to the amount of additional effort that participants 

were willing or able to invest in the combined demands of driving 

and the secondary cognitive task [6]. Thus, SCL and SDLP based 

model provides better performance to identify higher levels of 

mental demand than SCL based model. 

5. CONCLUSION 
In this paper, we proposed an algorithm for estimating driver’s 

cognitive workload using driving performance and physiological 

data. Especially, SDLP and SRR, and HR and SCL were 

considered as cognitive load indices for the driving performance 

and physiological, respectively. In order to collect driving data, 

participants drove through highway in a driving simulator and 

were asked to complete three different levels of auditory recall 

tasks. The driver’s cognitive workload estimation algorithm was 

developed using RBPNN models that were implemented by 

MATLAB NEWPNN function. 

The results show that the proposed SCL-based or SCL and SDLP-

based RBPNN models were able to identify driver’s cognitive 

workload complexity with high accuracy. The model performance 

was assessed with the cross-validation scheme, which is widely 

adopted by the machine learning community. As a result, the 

highest workload estimation accuracy rate in overall model 

performance was 85.6%. And it is also expected that the accuracy 

can be improved by applying more sophisticated algorithms. 
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