
Driver Workload Estimation System for Smart Vehicles 
 

Joonwoo Son* 

*HumanLAB, Daegu Gyeongbuk Institute of Science & Technology, json@dgist.ac.kr 

 

 

 
Abstract - Recent technological advances have enabled a wide variety of information systems to be integrated 

into a vehicle in order to increase safety, productivity, and comfort. However, improperly deployed 

technology can increase driver's workload and, consequently, degrade safety. Especially, potential 

information overload problems may become acute among older drivers who are the fastest growing segment 

of the driving population. Thus identification of a driver’s workload and spare capacity is crucial in the 

design of intelligent vehicles. With this knowledge, the in-vehicle information systems (IVIS) can provide 

timely and affordable information when the driver has the spare capacity to understand and respond it. 

This paper presents an empirical approach for estimating driver’s workload using driving performance, visual 

attention, and physiological indices. Moreover, the feasibity of diagnosticity to distinguish the type of driving 

workload was tested and a simple diagnositicity algorithm was proposed using a steering wheel angle and a 

lane position. In order to collect driving data, the participants drove through highway and were asked to 

complete a series of auditory and visual tasks in a driving simulator. The trade-off between driving 

performance and secondary task complexity levels was evaluated by analyzing driving performance, eye 

movement, physiological signals. As a result, potential measures of driver workload are suggested to classify 

the type of workload and estimate drivers’ cognitive workload. It is expected that these measures can be used 

for a prior indication of driving performance degradation. 
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1 Introduction 
 

  The growing introduction of new technologies inside 

vehicles generates additional information that drivers have 

to manage at the same time. Their use can interfere with 

the driving activity and induce performance decrements. 

Thus, voice recognition is widely used by vehicle 

manufacturer to reduce potential driver distraction. 

However, voice recognition also increases cognitive 

workload, even though it allows drivers to control various 

infotainment systems and other comfort features, while 

keeping their hands on the steering wheel and eyes on the 

road ahead. 

Diversion of attention to secondary tasks is one of the 

largest contributors to inattentive driving and, 

consequently, to accidents [1]. According to car accident 

statistics, driver distraction is an important safety problem. 

Between 13% and 50% of crashes are caused by driver 

distraction [2]. Therefore, an understanding of driver’s 

workload is essential in the design of intelligent vehicle. 

Workload can be measured in a variety of ways, including: 

driving performance based measures, subjective measures, 

and by physiological measures. However, no single 

measure presents complete effects of the workload. 

Furthermore, the effects observed depend on the types of 

workloads. Visual and cognitive distractions are two major 

types of driver workload. Both can degrade driving 

performance. Visual distraction is straightforward and can 

be measured by the duration and frequency of glances 

away from the roadway ahead. However, the effects of 

cognitive workload are very subtle and are not monolithic. 

Therefore, two major criteria for assessing workload 

should be considered. One is sensitivity which means 

ability to discriminate between levels of workload, and the 

other is diagnosticity which means ability to distinguish 

between types of workload [3]. 

This study aims to suggest methods to distinguish the type 

of driving workload and to discriminate high cognitive 

workload from low. 

 

2 Driver workload and measures 
 

2.1 Driver workload and in-vehicle tasks 
 

 According to the final report of Driver Workload 

Metric Project [4], driver workload is defined as the 

competition in driver resources (perceptual, cognitive, 

physical) between the driving task and a concurrent 

subsidiary task, occurring over the task’s duration, as 

manifested in degraded lane keeping, longitudinal control, 

object-and-event detection, or eye glance behavior. 

Another studies show that operating or talking on a mobile 



phone while driving results in increased workload and 

greater levels of frustration, particularly when the 

conversation is complex or highly emotional [5] and 

operating a route guidance system while driving also 

increases workload [6]. Figure 1 presents typical in-

vehicle tasks that have been classified by the input and 

output modalities needed to perform the task [4]. As 

shown in the classification, driver workload can be 

assigned into two categories, i.e. visual and cognitive, 

although there are more complex tasks which require both 

visual and cognitive demand. 

 

2.2 Measuring driver workload 
 

 Approaches to measuring driver workload are: 

subjective ratings, driving performance methods, 

physiological methods, and eye movement methods. 

Diving performance method is unobtrusive and practical 

for everyday monitoring, and is able to detect driver 

workload with decent performance while engaged in 

secondary tasks [3, 7]. However, it has limited ability for 

classifying workload into complexity levels, especially 

with cognitive workload. Physiological indices are more 

sensitive than performance measures for detecting 

cognitive workload [8] Lenneman found that heart rate 

and blood pressure have been shown to increase with 

escalating cognitive workload. However, there is currently 

little knowledge regarding a definitive relationship 

between changes in standard physiological parameters and 

workload has not been established in the driving literature 

[9]. Eye movement method uses fixation identification and 

changes in visual attention [10]. Reimer suggested that the 

centralization of gaze observed with increased cognitive 

workload thus the changes in gaze dispersion could be 

used as drivers’ cognitive workload indicator. All the 

approaches have advantages and disadvantages and no 

single measure presents complete effects of the workload. 

In this study, all of three objective methods were analyzed 

and suggested a potential combination of indices. 

 

 
 

Figure 1. Typical in-vehicle tasks classification 

3 Empirical approach for estimating 

driver workload 
 

3.1 Experimental setup 
 

 The experiment was conducted on the DGIST fixed-

based driving simulator with STISIM Drive™ software 

(see Figure 2). Graphical updates to the virtual 

environment were computed using STISIM Drive™ based 

upon inputs recorded from the OEM accelerator, brake 

and steering wheel which were all augmented with tactile 

force feedback. The virtual roadway was displayed on a 

2.5m by 2.5m wall-mounted screen at resolution of 1024 x 

768. Feedback to the driver was also provided through 

auditory and kinetic channels. Driving distance, speed, 

steering, throttle, and braking inputs were captured at a 

sampling rate of 30 Hz. Physiological data and eye 

movement data were collected using the MEDAC 

System/3 (NeuroDyne Medical Corp., Cambridge, MA) 

and the FaceLAB 4.6 (Seeing Machines Ltd., Canberra, 

Australia) respectively. 

 

3.2 Visual and cognitive workload 
 

 Both visual and cognitive workloads were designed 

for three levels of difficulty. For the cognitive workload 

during the simulated driving, the n-back task, an auditory 

delayed recall task, was used [7]. The n-back task requires 

the participants to say out loud the “nth” stimulus back in 

the sequence.  The lowest level is 0-back, i.e. immediately 

repeating the last number presented. At moderate level (1-

back) the next-to-last stimuli should be repeated, and the 

second-to-last stimulus for the most difficult level (2-back). 

The n-back was administered as a series of 30 second 

trials consisting of 10 single-digit numbers at an inter-

stimulus interval of 2.1 seconds. 

The task was given as a set of four trials per each level of 

difficulty for two minutes including introduction. The 

sequence of difficult level of the n-back task was 

randomly generated. Two minute rest was inserted 

between different levels of the n-back task. 

 

 
 

Figure 2. The DGIST Driving Simulator 



 For the visual workload, the arrow search task, which 

only required visual processing demand and minimal 

cognitive processing, was used [11]. To create three levels 

of difficulty for the arrows task, three different 

arrangements of arrows were presented, each for 10s, 

forming a series of two minutes trials using 12 arrow 

pictures. On some occasions the upward pointing target 

arrow was present and on others it was not. The actual 

presentations of the displays are shown in Figure 3. 

 

   

Level 0 Level 1 Level 2 

Figure 3. Three levels of difficulty for the arrow task 

 

3.3 Procedure 
 

 To analyze the effects of visual and cognitive 

workload on the driving behavior while driving, 

participants drove in good weather through 37km of 

highway twice, one for visual workload and the other for 

cognitive. Each driving takes about 20 minutes, and 

participants perform a secondary task, i.e. n-back task or 

arrow task at a specified segment. The order in which 

workloads were presented was balanced so that half of the 

participants drove under cognitive workload first. 

Figure 4 shows the main experimental procedure for 

cognitive and visual workload task. 

 

3.4 Data Analysis 
 

 Measures of driving performance, physiological 

arousal, and eye movement are listed on Table 1. 

 

 
 

Figure 4. Main experiment flow 

Table 1. Measures for driver workload 

Methods Measures Descriptions 

Driving 

Performance 

AvVEL Average velocity 

SdVEL 
Standard deviation of 

velocity 

SRR 
Steering wheel reversal 

rate 

SDLP 
Standard deviation of 

lane position 

Physiology 

AvIBI 
Average inter-beat 

interval 

SdIBI 
Standard deviation of 

inter-beat interval 

AvHR Average heart rate 

SCL Skin conductance level 

Eye 

Movement 

SdGazeX 
Standard deviation of 

gaze X 

SdGazeY 
Standard deviation of 

gaze Y 

AvGazeX average gaze X 

AvGazeY average gaze y 

 

Statistical analysis was computed using the Pearson 

correlation and the discriminant procedure in SPSS. 

 

4 Classification and Estimation 
 

4.1 Workload diagnosticity 
 

 Diagnosticity means ability to distinguish between 

types of workload. The best method to distinguish between 

visual and cognitive workload is watching the eye 

movement. However, this method requires additional 

camera based sensing system and complex image 

processing algorithm. In this paper, a simple diagnositicity 

method using driving performance is proposed. As shown 

in Figure 5, SRR (Steering wheel Reversal Rate) measures 

are increased as both visual and cognitive workload are 

increasing, but SDLP (Standard Deviation of Lane 

Position) measures show different direction according to  

 

 
 

Figure 5. Comparison of steering performance 



the type of workload. With this knowledge, we can infer 

the type of workload, i.e. visual or cognitive. For example, 

driver is under workload condition when the SRR is more 

than 20% higher than baseline value. When workload is 

occurred and the SDLP is decreased from its baseline, the 

type of workload will be cognitive. 

 

4.2 Cognitive workload estimation 

performance 
 

 In order to select affective measures for estimating 

cognitive workload, correlations between difficult level of 

cognitive workload and collected measures, including 

driving performance, physiology and eye movement, was 

analyzed using the Pearson correlation procedure in SPSS. 

As shown in Table 2, the standard deviation of gaze X and 

Y in eye movement, and the average velocity and the 

steering wheel reversal rate in driving performance were 

significantly affected on the cognitive workload difficulty. 

 With these variables, the accuracy of discriminant 

ability was analyzed and the result of cognitive workload 

estimation accuracy was summarized in Table 3. As 

mentioned before, the difficult level of cognitive workload 

was hard to estimate due to its non-linearity. Thus the 

difficult levels were reduced to 3 levels by removing 1-

back task level. Consequently, the reduced levels consist 

of non-workload, low workload (0-back), and high 

workload (2-back). The accuracy was increased by 67.8% 

with all measures. Moreover, the accuracy has remained 

62.2% with driving performance measures only. 

 The results suggested that the driving performance 

measures can discriminate high cognitive workload from 

low. 

 

Table 2. Correlations between difficult level of cognitive 

workload and various measures 

Driving 

Performance 

AvVEL SdVEL SRR SDLP 

-.375** .279** .366** -.164 

Physiology 
AvIBI SdIBI AvHR AvSCL 

-.188* .098 .180* .117 

Eye 

Movement 

SdGazeX SdGazeY AvGazeX AvGazeY 

-.535** -.472** -.239** .102 

 

Table 3. Comparion of estimation accuracy 

No. of 

difficult 

levels 

All measures 

in Table 2 

Significant 

measures
*
 

Driving 

performance 

measures
**

 

4 53.3% 49.2% 49.2% 

3 67.8% 64.4% 62.2% 
*
AvVel, SRR, SdGazeX, SdGazeY 

** 
AvVel, SdVel, SRR, SDLP 

5 Conclusions 
 

 In this paper, methods to distinguish the type of 

driving workload and to estimate cognitive workload were 

proposed. The experimental results show that a driver’s 

cognitive status could be estimated with an average correct 

rate of more than 62%, which is encouraging considering 

the difficulty of cognitive workload estimation. Although 

62% of accuracy is not enough to use in everyday 

monitoring, it is expected that the accuracy can be 

improved by applying more sophisticated algorithms and 

that these measures can be used for a prior indication of 

driving performance degradation. 
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