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ABSTRACT-Because the overall driving environment consists of a complex combination of the traffic Environment,
Vehicle, and Driver (EVD), Advanced Driver Assistance Systems (ADAS) must consider not only events from each
component of the EVD but also the interactions between them. Although previous researchers focused on the fusion of the
states from the EVD (EVD states), they estimated and fused the simple EVD states for a single function system such as the
lane change intent analysis. To overcome the current limitations, first, this paper defines the EVD states as driver’s gazing
region, time to lane crossing, and time to collision. These states are estimated by enhanced detection and tracking methods
from in- and out-of-vehicle vision systems. Second, it proposes a long-term prediction method of the EVD states using a time
delayed neural network to fuse these states and a fuzzy inference system to assess the driving situation. When tested with real
driving data, our system reduced false environment assessments and provided accurate lane departure, vehicle collision, and

visual inattention warning signals.

KEY WORDS : Advanced driver assistance systems, Active appearance model, Lane and vehicle detection, Neural networks,

Fuzzy inference systems

1. INTRODUCTION

Advanced Driver Assistance Systems (ADAS) support
driver decision making to increase safety and comfort by
issuing warning signals or by exerting active control in
dangerous conditions (Kim et al, 2008). Recently, the
computer vision research community has nearly commer-
cialized some vision based ADAS, such as Lane Departure
Warning Systems (LDWS), Collision Warning Systems
(CWS) and Drowsy Driver Warning Systems (DDWS),
due to improvements in detection and recognition perfor-
mance.

However, the overall driving environment consists of a
complex combination of the traffic Environment (Wu et al.,
2007), Vehicle (Chung et al., 2007), and Driver (Kim et al.,
2007) (EVD) (McCall et al., 2007). ADAS must consider
not only events from each component but also interactions
between them. For example, most LDWS use a specific
threshold of the Time to Lane Crossing (TLC: the time
until the host-vehicle gets to the left or right lane). Although
the algorithm uses a well-defined TLC based on statistical
analysis, the LDWS gives too many false alarms regardless
of the driver’s intention. Similarly, if a CWS using Time To
Collision (TTC: the time until the host-vehicle reaches
another vehicle) can consider the driver’s attention, it could
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suppress the false alarms by adjusting the TTC threshold.
Also driver fatigue and inattention warning systems using a
driver’s gazing angle can also be improved by useful con-
textual information on the surrounding traffic environment
and the vehicle state. Therefore, except in some critical
situations such as an abrupt variation of the TLC or TTC,
the EVD states should be fused for an interactive ADAS.

Some related papers support the possibility of an inter-
active ADAS using fused EVD states. McCall et al. (2007)
increased the time margin of TLC and improved the
estimation probability of the lane change-intent by fusing
the driver’s head direction, the vehicle state, and the lane
states, rather than just the vehicle and lane states. Fletcher
et al. (2005) proposed an ADAS which could provide the
road sign information that the driver missed by correlating
the driver’s gazing direction with the position of the road
sign. Fletcher’s ADAS could effectively reduce the driver’s
burden by suppressing useless information. Apostoloff and
Zelinsky (2004) integrated the lane tracker with the gaze
direction and they showed the relationship between the
yaw of the driver’s gaze and the yaw motion of vehicle.
Cheng et al. (2007) and Stiller et al. (2007) considered the
ADAS as an interactive closed-loop system of EVD states
and proposed an interactive road situation analysis frame-
work and a cooperative cognitive automobile framework,
respectively.

Although these papers overcame some problems of the
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Figure 1. Overall system (x(¢)=[DGR(?) LO(z) VD(?)]", y()=[TLC(?) TTC(0)]", m(?)=[TLC(z) TTC(t) DGR(:)]").

previous ADAS, they used simple estimation metrics for
EVD states such as the driver’s head angle or the vehicle
lateral offset and they developed single function systems
such as the lane change intent analysis.

To improve the current limitation, this paper first defines
three major EVD states from in- and out-of-vehicle vision
systems:

(1) Traffic environment state: TTC estimated from the
position and relative velocity of the front vehicle

(2) Vehicle state: TLC estimated from the lane position
and lateral offset

(3) Driver state: Driver’s gazing region estimated from the
driver’s gazing direction.

These states are estimated by enhanced detection and track-

ing methods from our in- and out-of-vehicle vision systems.

Second, this paper proposes a long-term prediction method

of the EVD states using a time delayed neural network to

fuse these states, and a fuzzy inference system to assess the

driving situation as shown in Figure 1.

2. IN-VEHICLE VISION SYSTEMS FOR
ESTIMATING THE DRIVER’S GAZING REGION

Estimating the driver's gazing region consists of the two
processes shown in Figure 2. First, the facial feature points
are tracked and the 3D head pose (yaw, pitch, and roll
angle) estimated by using the 2D+3D Active Appearance
Model (AAM). Second, the driver’s gazing region is found
by projecting the gazing direction onto the defined frontal
plane.

2.1. Tracking Facial Feature Points and Estimating 3D Head
Pose Using 2D+3D AAM

AAM is a stochastic model which can be taught from large
sample data. This can represent general facial shape and
texture if the sample data represent faces. AAM includes
both shape and texture models (Matthews and Baker,
2004). A 2D facial shape model consists of the mean shape
and its principal components, including many shape feature
points. A 2D facial texture model consists of the mean
texture and its principal components. Here, the basic theory

Step 1: 2DH3D AAM fitting

Constant

height

Constant depth

Step 2: Projecting the gazing direction onto the frontal plane

Figure 2. The proposed driver’s gazing region estimation
(M: 3D pose matrix).

of 2D+3D AAM is briefly introduced.

To make a 2D AAM, a database of facials shapes and
textures is required. After obtaining the sample facial
images under various poses and illumination conditions, 66
predefined facial shape feature points are marked manually
on the images. Equations (1) and (2) represent the marked
shape points as one dimensional vectors. The mean shape
and principal components of the shape (shape bases) can be
obtained through principal component analysis of the
marked shape points (Equations (3)~(6)).

A=[s, s, -+ 8y], (1)

s=Lxi yix y e X0y, ®)

where A is the shape data matrix, s; is the i" shape data
vector, and N is the number of samples.

1 N
=—5's. 3
m, NZJ: s, ?3)
A:[sl—ms S,—m; -+ Sy—m,], 4)
1%, AA'=UD.U", and )
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Us=[8: 8, - 8], (6)

where m, is the mean shape vector, U, is the matrix of
eigen-vectors, and D, is the matrix whose diagonal ele-
ments are eigen-values of the covariance matrix of shape
data.

To make a 2D texture model, the image inside the shape
feature points should be warped by an affine transfor-
mation from the original shape to the mean shape, as
shown in Equations (7)~(12).

B=[t t, - ty], (7)

t=|R GBI R --- G/ B], (8)
1 N

mt_—z ti > (9)

B=[t,—m, t,-m, --- ty—m,], (10)

l B'=UDU’ , and (11)

Uz=[f1 fz fl] , (12)

where B is the texture data matrix, t, is the i" texture data
vector, n is the number of pixels, m, is the mean texture
vector, U, is the matrix of eigen-vectors, and D, is the
matrix whose diagonal elements are eigen-values of the
covariance matrix of texture data.

The overall procedure for making the 2D shape and
texture model is depicted in Figure 3.

Once a 2D AAM is constructed, it is assumed that any
facial shape (s) and texture (t) can be represented as the
linear summation of mean (m,, m,) and principal compo-
nents (S;, §,) (Equations (13) and (14)).

s=m+Y adi, (13)
t=m+) Bi,. (14)

where the coefficients ¢; and f; are the shape and texture
parameters, respectively.

The 3D head pose cannot be obtained only with 2D
AAM. Therefore, an additional 3D shape model must be
generated by a 3D reconstruction method (Xiao et al.,

2D
similarity
transform

|~ x.'%f

2004). This method can recover 3D shape data from the 2D
shape data. Then, an 3D shape model, which consists of 3D
mean shape and principal components (3D shape bases), is
constructed by principal component analysis. Like the 2D
shape case, any 3D facial shape (s,,) can be represented as
a linear summation of a 3D mean shape (m,,) and bases (s;)
as in Equation (15).

S;p=Mipt+ Y 78i, (15)
where the coefficients y are the 3D shape parameters.

The 3D head pose is found by minimizing the sum-
mation of the square errors between (i) the image produced
by the 2D texture model and the 2D input image and (ii)
the 2D input image and the projected 2D shape of the 3D
shape (Xiao et al., 2004). The least squares solution is
found via the second order AAM fitting method (Choi and
Oh, 2006). This fitting process initializes the first face
position using the Adaboost face detection technique
(Viola and Jones, 2004).

2.2. Estimating the Driver’s Gazing Region in the Frontal
Plane

To estimate the driver's gazing region in the frontal plane,
one must consider the 3D pose matrix (M), the distance
between the driver and frontal plane (d), and the height of
driver's face (k) as shown in Figure 4. The problem was

— u
Z Y
d »
X

Figure 4. Projection of the driver’s gaze onto the frontal
plane.

[Si‘nape model]

Texture PCA
Aa(x) A(x) Az(x) Az(x)

[Texture model]

Figure 3. Construction of 2D AAM: shape and texture models (the images representing shape Principal Components
Analysis (PCA) and texture PCA are adopted from Matthews and Baker (2004)).
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simplified by assuming that the frontal plane is orthogonal
to the Z-axis and that there is no translation of the driver's
head (rotation only). These assumptions are valid because
the driver's body and head remain on the seat and headrest
most of the time.

In Figure 4, the frontal plane is represented by Equation
(16) because the plane is orthogonal to the Z-axis and
expanded through the point (0, 0, d).

(0,0,1)-(x—0, y—0, z—d)=z—d=0. (16)

The line of the driver's gaze is parallel to the directional
cosine vector of M (direction of the driver's frontal face)
and goes through the point (0, 4, 0). Therefore, the gazing
line is modeled as Equation (17). Here, the directional
cosine vector of M is calculated by multiplying M to the
unit vector along to the Z-axis as Equation (18).

x _y-h ¢z
cosé. cos Q,_cos 6. a7
cos O, 0
cos6,|=Mx| 0 (18)
cos 0. 1

Solving Equations (16) and (17) simultaneously gives the
crossing point (u, v), which is both on the frontal plane and
on the gazing line.

x_dcos 0. dcosb,
Y Y= cosd,

+h, z=d (19)
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Figure 5. Lane and vehicle detection systems.
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Figure 6. Estimation of the curvature model. (a) 5 lane
curvature models. (b) Road coordinates and offset for
transforming a curve model to a line (W: predefined width
for a road ROI) (Above image for curvature models is
adopted from He et al. (2004)).

dcos @, dcos0, h) (20)

O A .
The frontal plane was divided into 7 different regions:
frontal window (front, left, and right view), audio, cluster,
and left and right side mirrors. Thus, the driver's gazing
position in (u, v) coordinate can be correlated to the 7
regions on the frontal plane.

3. OUT-OF-VEHICLE VISION SYSTEMS FOR
ANALYSING TRAFFIC ENVIRONMENT AND
VEHICLE STATE

Out-of-vehicle vision systems mainly consist of lane and
vehicle detection components, as shown in Figure 5. Lanes
are detected by the difference between the predefined lane
curvature models and an Inverse Perspective Transform
(IPT) map. Vehicles are detected by first generating Regions
of Interest (ROIs) for vehicles by separating road and non-
road regions. Then, these ROIs are verified using the
classifier designed for this purpose. Finally, lateral offset
and vehicle-to-vehicle distance are estimated.

3.1. Lane Detection and Vehicle ROI Setting

Lane detection starts with the estimation of the lane curva-
ture, as is done in He et al. (2004). Pre-defined curvature
models (Figure 6(a)) and offsets are useful to transform a
curve model to a line (Figure 6(b) and Equation (21)).

offset=a,(x/(v+b,)+u’—(v+b,)) and i: curvature model
number € [1, ..., 5], 21)

where a; and b, are transformation parameters for each
curvature model (for example, a,=1, b,)=W), and u and v are
a point in the road coordinates. Here only 5 curvature
models are used because 5 curvature models is all that is
required to cover most lane curvatures.

IPT images for each curvature model (Figure 7(c)) are
transformed from the edge image (Figure 7(b)), and the
lane is the maximum of the vertical histogram for each IPT
image (Figure 7(c)). Road and non-road regions are classi-
fied from initial road training samples acquired from the
near region between both lanes (Figure 7(d)). The initial
non-road training samples are acquired from above the
vanishing point. After detecting or tracking vehicles, the
road and non-road training samples are expanded to other
regions using the known vehicles. A Classification and
Regression Tree (CART) is used for on-line learning (Davis
and Lienhart, 2006). The input feature of the CART is the
RGB (Red, Green, Blue) color components. Although some
vehicle colors may be similar to the road color, color in the
shadows underneath the vehicle or rear lamps can distin-
guish the vehicle from the road as shown in Figure 7(e).

The vehicle ROI with the proper vehicle size (R) is
determined by the probability of the non-road (P,(R)).

w=k(r—hz), where
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(d)

(e) 6

Figure 7. Extraction of vehicle ROIs: (a) Input image; (b) Edge image; (c) IPT image (transformed by curvature model #3);
(d) Generation of road (blue dot) and non-road (red dot) training samples; (¢) Road classification result (yellow: road region,

magenta: non-road region); (f) Generation of vehicle ROIs.

D
H(A+h?)’
H is the height of the camera, /z is the vertical coordinate
of the vanishing point in the image, A is the focal length, r
is the vertical coordinate of the image, and D is the
predefined vehicle width.
P,(R) is derived from the integrated ii,(x, y) for the non-

road region from Equations (23) and (24) (Viola and Jones,
2004) as follows:

(22)

i(xny)= Y Ly, (23)

X=X,y <y

where if i,(x',y") € non-road region,
otherwise, i,(x',y")=0.

SJ(R)
S(R)

where S(R): area of region R, and S,(R)= Z i,(x,y).
xX,yeR
If P, (R)=0.5, region R may contain a non-road object as

shown in Figure 7(f). This attention mechanism can effec-
tively reduce the number of search windows and reduce
false positive errors.

i,(x',y")=1, and

P.(R)= 24)

3.2. Vehicle Detection

Vehicles are detected via Support Vector Machine (SVM)
and Scale Invariant Feature Transform (SIFT) (Lowe, 1999).
First, SIFT features (keypoints) are extracted from ROI.
The rich and distinct texture information of the vehicle is
expressed by dividing a ROI into overlapping sub-regions
as shown in Figure 8(a). The top region generally includes

_Feature vector for a ROI

Top region [
= o | E -
Bottom region :
-“o e

tQ,“r

l'---—b Keypoint direction
l‘;‘ s Keypoint scale

(a) (b)

Figure 8. Generation of the input feature vector:
(a) Keypoint extraction; (b) Input feature vector.

Feature value

Figure 9. Examples of vehicle rear-view images used for
training.

the rear-window, tail-lamps, etc., and the bottom region
mainly includes the bumper, license plate, tires, etc. An
input feature vector is composed of the integrated and
normalized descriptor as shown in Figure 8(b).

The training Database (DB) includes rear-view images
of vehicles (Figure 9) and non-vehicles. Vehicle images
include various vehicle types. Non-vehicle images include
many false positive samples due to road repairs, road signs,
guardrails, oil spills and shadows.
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3.3. Parameter Estimation for Analyzing Traffic Environ-
ment and Vehicle State
Table 1 lists representative parameters which can analyze
the traffic environment and host-vehicle state (EV).
The TLC and TTC parameters were used to consider the
host-vehicle and traffic environment simultaneously.
TLC is estimated by considering the linear lateral
velocity without the vehicle’s yaw angle. The state vector
X,.(f) and measurement vector z,(z) for Kalman filter are

Xl )=[Lidt) Viult) Aift)]" and (25)
2 {t)=L1l1),

where L,,(?), V,.(f), and A4,,(f) are the lateral offset, vehicle
lateral velocity, and its acceleration, respectively.

The transition matrix M,, and measurement matrix H,,
are

1 T 05T
MIE,Z 01 T and (26)
00 1

H,=[1T0.5T7],

where T is the time step.
The covariance matrix of the process noise will be

Table 1. Representative parameters for EV.

Vehicle velocity
Heading angle

Vehicle Yaw rate Lateral offset
Steering angle Latergl Veloqlty
— Relative vehicle-to-
Lane position vehicle velocity
Traffic Lane curvature TLC
environment Lane type TTC
Vehicle-to-vehicle
distance

x(1) =[DGR(?) LO() VD(1)]"

0.~Gq,,G", where the matrix G and ¢, are
G=1057"T1]" and (27)
qlar=o-/24

assuming a zero mean and white Gaussian process noise
with variance o, for the acceleration.

Similarly, the covariance matrix of the measurement
noise is

R.=0} (28)

where o, is the variance for the lateral offset.
For the short-term TTC estimation, the state vector and
measurement vector are

Xlong(t):[Llung(t) I/lang(t) Along(t)]T and (29)
ZTTC(I):LIong(t)a

where L, (£), Vi(t), and A4,,,(?) are the vehicle-to-vehicle
distance, the relative velocity, and the relative acceleration,
respectively.

Other vectors and matrices for TTC estimation are
similar to those for TLC.

Short-term TTC can be estimated as follows:

Llon (t)
TTC(t)=""= 30
() Vlung(t) ( )
4. EVD ESTIMATION AND SITUATION
ASSESSMENT USING NEURAL NETWORKS
AND FUZZY INFERENCE

4.1. EVD States Estimation Using Neural Networks

Because EVD states are continuously coupled to each other
in a non-linear way, it is difficult to estimate the long-term
EVD states with conventional estimation methods such as
KFs, Bayesian filters, HMMs, etc. Neural networks have
the advantage of model-free learning, adaptation, and com-
plex nonlinear mapping. Specifically, Time-Delayed Neural
Networks (TDNN) (Mandic and Chambers, 2001) are

x(f) r’ N ¥(0)
TDNN __’<Z>

5 56

Input layer

(a)

Hidden layer Output layer

(b)

Figure 10. Applied TDNN architecture (a) and training configuration (b).
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w  Warning for situation assessment

Figure 11. Used fuzzy inference systems.

powerful enough to capture the dynamics of the underlying
nonlinear dynamic systems in a number of practical
applications including speech recognition and time series
prediction. Our system uses a TDNN with a multilayer
perceptron architecture with time series inputs of lateral
offset (LO), and with a vehicle-to-vehicle distance (VD)
and driver’s gazing region (DGR). The output is composed
of the long-term EV states.

A training set for long-term TLC can be easily construct-
ed from the real lane-crossing situation, but the ground
truth for long-term TTC is not available. As the short-term
TTC acquired from Section 3.3 is reliable, the training set
for the long-term TTC is constructed by integrating the
short-term TTC. Our training and test database included
various real driving situations such as crossing lanes, ap-
proaching vehicles, and driver’s visual inattention, as well
as normal driving.

4.2. Fuzzy Inference for Situation Assessment

The current driving situation can be assessed from the
estimated EVD states with a fuzzy inference system,
because it can incorporate human knowledge. We use the
Mamdani fuzzy inference systems (Mamdani and Assilian,
1975) as shown in Figure 11.

Fuzzy input and output Membership Functions (MFs)
are empirically designed as shown in Figure 12. DGR is the
singleton function that represents the specific gazing region

Very small  Small

Large Very small Small Large Very small  Small Large Very large

TTC 2 3 4 TDGR 0 2 4 [
(b) (c)
Left-side Frontal Vehicl
mirror window chicle
Right-side Left  Right ) Lane collision \-"lsuall
Cluster Audio mirror window window Safe departure inattention
DGR 1 2 3 4 5 6 Output 0 1 2 3
(d) (e)

Figure 12. Fuzzy Membership Functions (MFs): (a) TLC
MF; (b) TTC MF; (c) TDGR MF; (d) DGR MF; (e) Output
MF.

and TDGR represents the gazing time duration for the

specific region.

Output MF for situation assessment consists of inatten-
tive lane departure, inattentive vehicle collision, driver’s
visual inattention, and safe driving as shown in Figure
12(e).

Representative fuzzy if-then rules for driving situation
assessment are as follows:

(1) Rule for the inattentive lane departure warning: 1f the
TLC is very small and the DGR is not in the side
mirror, then the inattentive lane departure warning
should be given.

(2) Rule for the inattentive collision warning: 1f the TTC is
very small and the DGR is not in the frontal window,
then the inattentive vehicle collision warning should be
given.

(3) Rule for the visual inattention warning: If the DGR
maintains at the defined inattention regions (cluster,
audio, left and right side mirrors) with a large TDGR,
then the visual inattention warning should be given.

(4) Rule for the safe driving: 1f the TLC and TTC are large
and the DGR remains in the appropriate attention
regions, then the current driving situation is safe.

5. EXPERIMENTAL RESULTS

The proposed driving environment assessment system was
tested in two main parts using real-driving data: EVD states
estimation and situation assessment.

5.1. EVD States Estimation

The AAM model for driver state estimation was trained
from 54 images of 3 people. The images included various
head poses and illumination conditions.

The AAM model for driver state estimation was trained
from 54 images of 3 people. The images included various
head poses and illumination conditions. We marked 66 shape
feature points on the images manually. Figure 13 shows
sample images with the shape feature points marked. The

Figure 13. Some sample images for constructing 2D+3D
AAM.
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Frame Number Frame Number

(a) (b)

Roll

— Estimation

Angle (Degree)
3 8 o »u w
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Figure 14. Pose tracking performance: (a) Yaw angle; (b)
Pitch angle; (c) Roll angle.

constructed AAM consists of the mean shape, 8 shape
bases, the mean texture, and 10 texture bases.
Test image sequences included various drivers’ head

LR LR i,

positions while the height of the head and the distance
between the driver and frontal plane were constant. Figure
14 shows the result of the driver’s head pose estimation
compared with the gyro sensor. After the gyro sensor
stabilized (which occurred at about the 100" frame), the
average error was below 3 degrees. Figure 15 shows the
result of the driver's head pose estimation (left column) and
the estimated gazing region on the frontal plane (right
column). This result shows that our proposed method can
not only correctly estimate the driver's gazing region on the
frontal plane but also track the gazing direction in real time
(above 15 Hz).

The proposed TDNN used 30 inputs (the current state +
9 time-delayed states), 2 hidden layers (30-20), and 2
outputs (TLC, TTC) to estimate the long-term EV states. It
was trained with 2300 training samples and tested with
1800 other samples as shown in Figure 16.

Figures 17(a)~(c) show the driver’s gazing region, lateral
offset, and vehicle-to-vehicle distance, respectively. And
Figures 17(d)~(e) show the estimation results of EV states
using the proposed TDNN.

The performance is compared to a Kalman filter. Because
the Kalman filter can’t consider the driver state and

Figure 15. Experimental results of the driver’s gazing region estimation; (a) Gazing at cluster: (b) Gazing at frontal window:

(c) Gazing at left mirror: (d) Gazing at right mirror.

Figure 16. Database samples; (a) Normal safe driving case: (b) Intentional lane departure warning case: (c) Safe vehicle-to-
vehicle distance maintenance: (d) Inattentive vehicle collision warning case.
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Figure 17. Long-term EV states estimation using TDNN: (a) Driver’s gazing region; (b) Lateral offset; (c) Vehicle-to-
vehicle distance; (d) Long-term TLC estimation result; (¢) Long-term TTC estimation result
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Figure 18. Situation assessment by fuzzy inference systems: (a) Inattentive lane departure warning case; (b) Inattentive
vehicle collision warning case; (c¢) Driver’s visual inattention warning case.

assumes linear relationships between EV states, the TLC
and TTC estimation results have many false matches. But
the TDNN estimation results follow the ground truth well.
In the TLC estimation case, although the pattern of EV
states is similar to the lane departure case (for example,
between the 600th frame and the 800th frame), TDNN can
estimate the TLC with small errors. In the TTC estimation
case, the Kalman filter result is very sensitive to the vehicle-

to-vehicle distance, while the proposed TDNN overcomes
the problem by fusing the EVD states.

5.2. Situation Assessment by Fuzzy Inference Systems
Figure 18 shows the situation assessment by the fuzzy
inference systems designed in this paper, where the red

circles of each figure represent the predefined warning in
Section 4.2. Although there are many lane departure cases
in the test DB as shown in Figure 18(a), only 4 inattentive
lane departure warnings are generated. Figure 18(b) shows
two inattentive vehicle collision warnings, where the host-
vehicle approached the front-vehicle and the driver had not
gazed at the frontal window for a while.

Figure 18(c) shows that visual inattention warnings were
generated when the driver gazed at the defined inattention
regions for a large TDGR.

Because the host-vehicle approaches the front of the
vehicle and the driver doesn’t gaze at the front window for
a while, inattentive vehicle collision warning cases are
generated as shown in Figure 18(b). And because the driver
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gazes the defined inattention regions with a large TDGR,
visual inattention warning is generated as shown in Figure
18(c).

6. CONCLUSIONS

Compared to the previous systems which used limited

states and gave many false warnings, the proposed driving

situation assessment system can generate proper warnings
and reduce the false warnings by using the following
metrics:

(1) Improved EVD detection methods

— Driver’s gazing region estimation using 2D+3D AAM

fitting and projection of the driver’s gaze onto the
frontal plane

— Vehicle detection using SVM and on-line learning and

the probability of non-road region

(2) Long-term state prediction: TDNN fuses EVD states
and predicts long-term EV states from various real
driving training DB.

(3) Multiple driving situation assessment: Fuzzy inference
generates lane departure, vehicle collision, and visual
inattention warning signals by using heuristic EVD
MFs and fuzzy if-then rules.

This research focused on the EVD states from the
forward area and assumed that the height of driver’s face
and the distance between the driver and frontal plan are
constant. Future work should cluster general driver’s gaze
motion and analyze EVD states from all around the vehicle
to extend this research to more general driver assistance
systems.
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