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ABSTRACT

This paper presents anempiri cal approach for
estimating driver's cognitive workload using driving
performance, especially lateral control ability through
readily available sensors such asla ne position and
steering wheel angle. To develop a real-time approach
for detecting cognitive distraction, radial ba sis
probabilistic neural networks (RBPNN)we re applied.
Data for training and testing the RBPNN models were
collected in a simulato r experiment in which fifte en
participants drove through a highway and were asked to
complete auditory recall tasks. The best perfo rming
model could detect cog nitive workload at the accuracy
rate of 73.3 %. The results demo nstrated that the
standard deviation of lane position and steering wheel
reversal rate can be use d to detect driver s cognitive
distraction in real time.

INTRODUCTION

Recent technological advances have enabled a wide
variety of informatio n systems to be integrate d into a
vehicle in order toin crease safety, productivity, and
comfort. However, improperly deployed technology can
increase driver's workload and, con sequently, degrade
safety. Thus identification of a driver's wo rkload and
spare capacity is crucial in the desi gn of intelligent
vehicles. With this knowledge, the in-vehicle information
systems (IVIS) can provide timelyand affordable
information when the driver has the spa re capacity to
understand and respond it [1].

Workload refers tothe a mount of re sources that is
required to perform a particular task. Two major types of
driving workload are visual and cognitive workload [2-3].
Visual workload is straightforward, occurring when
drivers look awayfro m theroad way; itcan be
reasonably measured by the du ration and frequency of
glances away from the road. Unli kely visual wo rkload,
cognitive workload is difficultto  measure directly
because itisessenti ally internal tothed river.
Nevertheless, there have been effort s to measu re
cognitive  workload using subjective = measures,

physiological measures, eye movement measures, and
driving performance measures [4-8]. Among those
measures, driving performance measures are known to
have limitations comp ared to others due to small
changes according to the cognitive workl oad, although
they are easy and less e xpensive measures to de tect
the cognitive workload [8].

This paper presents anempiri cal approach for
estimating driver’'s cognitive workload using driving
performance, especially lateral control ability through
readily available sensors such asla ne position and
steering wheel angle. The results suggest that the lateral
vehicle control measures including the stand ard
deviation of lane po sition and stee ring wheel reversal
rate can be use d to detect cognitive worklo ad in real
time as inputs of RBPNN models.

DRIVING
WORKLOAD

PERFORMANCE  AND COGNITIVE

Some studies have sho wn that cognitive distraction
undermines driving pe rformance by disrupting the
allocation of visual attention to the driving sce ne and the
processing of attended information. Consequently,
cognitive workload leads to significantly reduced lane
keeping variation andi ncreased response times to
sudden obstacles. In this pape r, therefore, two driving
performance measures, i.e., lateral position variation and
steering wheel activity, were sel ected to asse ss lateral
control ability.

Lateral position variation - Lateral po sition variation is
one of the most commonly used driving behaviors metric.
Reduced variation in lateral position when engaged with
a cognitive task coul d be interpreted as a sympto m of
driver overload and increased risk of incorrect decisions
due to bein g engaged in a distra cting task. Lateral

position variationis co mmonly calculated as the

standard deviation of lateral position (SDLP). But, SDLP
becomes highly correlated to data duration, because the
variations in lane position are rather slow. Thus, new
lateral position variation measure, modified sta ndard
deviation of lateral po sition (MSDLP), was proposed in



the AIDE project [10]. M SDLP isindependent of data
length, because itis ba sed on high -pass filtering | ane
position data before standard deviation is calculated. A
high pass filter with 0.1 Hz cut off freq uency is applied
on lane position data. This makes the variation constant
after approximately 10 seco nds. The filter that was
applied resulted in SDLP being uninfluenced by data
lengths over the filter time period.

Steering wheel activity - Cognitive secondary tasks yield
increased steering activity. The incre ase is mainly in
smaller steering wheel movements, the majority of which
are smaller than 1 degree. This often come s with
increased gaze concentration towards the road centre
and reduced lateral p osition variance [10]. The steer
wheel reversal rate can be used for measuring the
increase of smalle r steering wheel movements. Itis
defined as the number, per minute, of steering wheel
reversals larger than a certain minim um angular value
(so called the gap size).

RADIAL BASIS PROBABILISTIC NEURAL NETWORKS

In this paper, radial basis probabilistic neural netwo rks
are applied for estimating driver's cognitive workload
using later control mea sures of drivin g performance.
Radial basis probabilistic neural networks are a kin d of
radial basis networks which are suitable for classification
problems [11]. When an input is presented, the first layer
computes distances from the input vect or to the training
input vectors, and p roduces a vector whose elements
indicate how close the input is to a training inp  ut. The
second layer sums these contributions for each class of
inputs toprodu ce asit s netoutpu t a vector of
probabilities. Finally, a compet e transfer function on the
output of the second layer picks the m aximum of these
probabilities, and produces a 1 for that class and a 0 for
the other classes.

MODEL CONSTRUCTION
DATA SOURCE

Experimental setup - The experiment was conducted in
the DGIST fixed-base d driving simulato r, which
incorporated STISIM Drive™ softwa re and a fixed car
cab as shown in Figure 1. Grap hical updates to the
virtual environment were computed using STI SIM
Drive™ based upon inputs recorded from the OEM
accelerator, brake and steering wheel which were all
augmented with tactile force feedback. The virtual
roadway was displayed on a 2.5m by 2.5m wall-mounted
screen at a resolution of 1024 x 768. Sensory feedback
to the drive r was also provided through auditory and
kinetic channels. Distance, speed, steering, throttle, and
braking inputs were captured at a nominal sampling rate
of 30 Hz. A display was installed on the screen beside
the rear-view mirror to provide inform ation about the
elapsed time and the distance remaining in the drive.

Subjects - Subjects were required to meet the following
criteria: age between 25-35, drive on average more than

twice a week, be in self-reporte d good health and free
from major medical conditions, not take medications for
psychiatric disorders, score 25 or greater on the m ini
mental status exam|[1 2] toestab lish reasonable
cognitive capacity and situational awareness, and have
not previously participated in a simulat ed driving study.
The sample consisted of 15 males, who are in the 25-35
age range (M=27.9, SD=3.13).

Cognitive Workload - An auditory del ayed digit re call
task was used to create p eriods of cognitive demand at
three distinct levels. This fo rm of n-back task requires
participants to say out lo ud the nth st imulus back in a
sequence that is presented via audio recording [13]. The
lowest level n-back taskisthe  0-back where the
participant is to immediately repeat out loud the last item
presented. At the moderat e level (1-back), the next-to-
last stimuli is to be repeated. At the most difficult level
(2-back), the se cond-to-the-last stimulus is to be
repeated. The n-back was administered as a series of 30
second trials consisting of 10 single digit numbers (0-9)
presented in arandomized order at an inter-stim ulus
interval of 2.1 seconds. Each task period consisted of a
set of four trials at a defined le vel of difficulty resulting in
demand periods that were each two minutes long.

Procedure - Following informed consent and completion
of apre-experim ental questionnaire, participants
received 10 minutes of driving experie nce and
adaptation time in the simulator. The simulation was
then stopped and participants were trained in the n-back
task while remaining seated inthe vehicle. N-back
training continued until participa nts met minimum
performance criteria. Performan ce on the n-back wa s
subsequently formally asse ssed ate ach of the thre e
demand levels with 2 minute breaks between each level.
When the simulation was resumed, participants drove in
good weather through 37km of straight highway. Minutes
5 through 7 were used as a single task driving reference
(baseline). Thirty seconds later, 18 seconds of
instructions introduced the task (0, 1 or 2-back). Each n-
back period was 2 minutes in duration (four 30 second
trials). Two minute rest/recovery periods were provided
before presentingin structions for the next task.
Presentation order of the thr ee levels of task difficulty
was randomized across participants.

Figure 1. The DGIST Driving Simulator



MODEL CHARACTERISTICS AND TRAINING

Definition of Cognitive Workload - The cogni tive
workload was classified into two cate gories, i.e., low
workload and high workload by the RBPNN models. In
general, the more tasks a driver is conducting at a time,
the more resources he/she is consuming and, therefore,
the higher workload he/she is bearing [8]. Based on this
assumption, the driving performance data in the dual-
task period were labeled as high wo rkload and low
workload for single tasks period. However, the cognitive
capacity required to perform the same tasks varies from
person to person. It me ans that the workload levels
induced by n-back tasks might be differ for diffe rent
drivers. Therefore, the lowest difficulty level, so called 0-
back, was omitted in this paper to re duced individual
variation. Consequently, single task period (driving o nly)
was categorized as low workload and dual task periods
(1-back and 2-back) were considered as high workload.

Input Features - Two driving performance measures, the
standard deviation oflane po sition (MSDLP)and

steering wheel reversal rate (SRR), were selected as
lateral control ability indices to estimate the dri ver's
cognitive workload in the RBPNN models.

MSDLP was calculated using 0.1 Hz high pass filtered
lateral position data. It can be only applied for data sets
longer than 10 seconds and not during lane changes.

SRR was calculated by counting the number of steering
wheel reversal from the 2Hz low pass filtered steering
wheel angle data. For cognitive workload, the rev ersal
angles, more than 0.1 d egree ofthe gap size, were
counted.

Summarizing Parameters of Inputs - Inthis paper,
window size was considered ast he summarizing
parameter for the inputs. Window size denotes the

period over which MSDLP and SRR data were averaged.

The comparisons of window size could identify the
appropriate length of datat hat can be summa rized to
reduce the noise of the in put data without losing useful
information. This paper considered five window sizes: 2,
5, 10, 15 and 30 seconds.

Model Training and Te sting - Radial basis probabilistic
neural networks (RBPNN) were used to construct the
driver's cognitive workload detection models. In this
paper, the model s were trained u sing the NEWPNN
function in MATLAB.

For training and testing RBPNN models, data of four
task segments, which consist of a single task and three
dual tasks, were u sed. A task wa s divided into multiple
segments based on wind ow size. For example, if the
model uses 30 seconds window, one task has four
segments as shown in Figure 2. In each task, two
segments were used for training and the other segments
were used for testing. Since the estimator is always
evaluated on the data disjoint from the training data, the
performance evaluated through the cross validation

Tasks Basslne Task 1 Rest Task 2 Rest Task 3
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Figure 2. Allocation of Segments to Training and Testing
Sets

No d No d

scheme correctly reflects the a ctual generalization
capability of the derived estimator.

Model performance was evaluated with testing accuracy,
which is the ratio of the num ber of instance s correctly
identified by the mod el to the total num ber of instances
in the testing set.

RESULT AND DISCUSSION

According to five time window sizes, workload estimation
accuracy rates are described in T able 1. The hig hest
workload estimation accuracy rate in overall mo del
performance was achieved when the time window size
was 30 seconds, thelo ngest window size. With 30
seconds window, the accuracy rate of single tasks, i.e.,
low workload criteria, was 73.3%, and that of dual tasks,
i.e., high workload criteria, was 73.3% as well.

From the overall model performance perspective, longer
window sizes generated more accurate models, which is
consistent with a previous study [8].

Table 1. Model Performance with Different Window Size

Wis?gg ! Workload estimation Single | Dual Total
(sec) Task | Task

High workload 384 851 -

2 Low workload 66 49 -
Estimation accuracy rate (%) | 14.7 946 | 679

High workload 137 332 -

5 Low workload 43 28 -
Estimation accuracy rate (%) | 23.9 922 | 69.4

High workload 40 152 -

10 Low workload 50 28 -
Estimation accuracy rate (%) | 55.6 844 | 748

High workload 34 107 -

15 Low workload 26 13 -
Estimation accuracy rate (%) | 43.3 89.2 | 73.9

High workload 8 44 -

30 Low workload 22 16 -
Estimation accuracy rate (%) | 73.3 733 | 733




However, the accuracy rates of si ngle and du al task
conditions shows opposite trends with different window
size. The longer time window size provides better model
performances in the singl e task d etection but poo rer
performance in the dual task condition.

When the time wind ow size was 15 seconds, for single
tasks, the accuracy rate to detect the low workload was
43.3%, and for dual tasks, the accuracy rate to detect

the high workload was 89.2%. When the time win dow
size was 10 seconds, for single tasks, the accuracy rate
to detect the low workload was 55.6%, and for dual tasks,
the accuracy rate to detect the high workload was 84.4%

The results show thatth e proposed RBPNN models
were able to detect drive r distraction substantially better
than chance performance. Zhang et al. [8] propose d
driver cognitive workload estimation and showed the
accuracy rate of their method is o ver 80% through
various measures such as driving performance and eye
activities by a machine -learning-based DWE (Driver
Workload Estimation) development process when the
time window size was 30 seconds. The main contributor
of the high accuracy rat e intheirmodel s was eye
movement measures, which were obtained from very
expensive gaze tracking device. The robustness of eye
movement measures is still doubtful because the data
were easily influenced by ambient light. However, the
proposed method in this paper is easy to implement and
compute driver’s cognitive workload because it uses only
lateral driving performance and there is no need to
attach the sen sors toahumanb  ody like other
researches using physiological measures.

CONCLUSION

In this pa per, we p roposed an empirical approach for
estimating driver's cognitive workload using driving
performance, especially lateral control ability through
readily available sensors such asla ne position and
steering wheel angle. In orde r to coll ect driving d ata,
participants drove through highway in a driving simulator
and were asked to complete three dif ferent levels of
auditory recall tasks. The driver's cognitive workload
estimation system wa s developed using radial basis
probabilistic neural netwo rk that was implemented by
MATLAB and used NEWPNN function.

The results demonstrated that the propo sed RBPNN
models were able to detect driver distraction
substantially better than c hance performance, and the
standard deviation of lane position and steering wheel
reversal rate can be use d to detect driver’ s cognitive
distraction in real time. F or model parameter selection,
longer window sizes ge nerated more accurate mo dels,
which is consistent with a previous study [8].

The model performance was assessed with the cross-
validation scheme, whi ch is widely adopte d by the
machine learning community. As a re sult, the hi ghest
workload estimation accuracy rate in overall mo del
performance was 73.3%. Although 73.3% of accuracy is

not enough to usein everyday monitori ng, itis
challenging because the result was achieved from two
driving performance measures; MSDLP and SRR. T hey
are easy to collect the data through readily available
sensors, and need not to attach additional se nsors to
human body. And itis also expected that the accu racy
can be improved by applying mo re sophisticated
algorithms.
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