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This paper suggests experimental approaches for identifying driver’s cognitive workload using support vector machines (SVMs)

with driving performance, physiological response and eye movement data. In order to construct a classification model for

detecting high cognitive workload condition, driving simulation experiments were conducted. For the experiments, 30

participants (15 younger males in the 25-35 age range (M = 27.9, SD = 3.13) and 15 older males in the 60-69 (M = 63.2, SD =

1.74)) drove a simulated highway in a fixed-base driving simulator. While driving through 37 km of straight highway, participants

conducted three levels of cognitive secondary tasks, i.e. an auditory delayed digit recall task, at specified segments for 10

minutes and their driving performance, physiological response and eye movement data were collected. In this study, the model

performances with different combination of measures were assessed with the nested cross-validation method. As a result, it was

demonstrated that the proposed SVM models were able to identify driver’s cognitive workload with high accuracy. The best

performance was achieved with a combination of the standard deviation of lane position (SDLP), physiology and gaze information.

The best model obtained 89.0% accuracy, sensitivity of 86.4% and specificity of 91.7%.

1. Introduction

Driver inattention causes a significant problem for road traffic

safety, because it degrades driving performance and situational

awareness. According to car accident statistics, between 25% and 78%

of crashes are caused by driver inattention.1 Drivers’ cognitive

workload, when it is too low (e.g. fatigue or drowsiness) or too high

(e.g. stress or multiple tasks), is related to driver inattention and

accident.2,3 Thus, a proper identification of a driver’s workload and

spare capacity is one of the promising approaches to designing an

adaptive automotive user interface for reducing driver distraction.4 By

monitoring driver’s workload, the adaptive interface can provide timely

and targeted information when the driver has the spare capacity.

According to the final report of the Driver Workload Metric Project5

in the United States, driver workload is defined as the competition in

driver resources between the driving task and a concurrent subsidiary

task, occurring over the task’s duration, as manifested in degraded lane

keeping, longitudinal control, object-and-event detection, or eye glance

behavior. Two major types of driving workload are visual and cognitive

workload. Visual demand is straightforward, but cognitive workload is

difficult to measure directly because it is essentially internal to the

driver.6 Nevertheless, there have been efforts to measure cognitive

workload using subjective measures,7,8 physiological measures,9-12 eye

movement measures,13,14 and driving performance measures.10,14

Among those measures, driving performance measures can detect the

cognitive workload using easy and less expensive methods through

readily available in-vehicle information.15,16 However, driving

performance measures are known to have limitations compared to

others due to their reflected small changes with respect to the cognitive

workload changes.6,11,15

On the other hand, physiological measures have been proposed as

useful metrics for assessing workload. Mehler et al. found that a near

linear increase in heart rate and skin conductance appeared as the

workload levels increase.11 Then, Son et al.17 demonstrated that the

combination of performance and physiological data can be effectively

used for estimating cognitive workload, but the data sets in their study



were limited to younger drivers. The results may not be so clearer for

older adults.

Recent researches3,13,14 suggested that cognitive workload induced

gaze constriction due to higher levels of workload, this affects the

allocation of attention to regions of the peripheral visual field through

changes in visual search orienting and monitoring surrounding objects.

Using this finding, Son et al.18 reported that the combination of driving

performance and eye movements could be effectively used as inputs to

an artificial neural network models for discriminating high cognitive

load conditions from normal driving. Unfortunately, the accuracy rate

in the overall model performance was limited, i.e. 85%, and only

younger drivers’ data sets were used. Another limitation of the previous

studies17,18 is that they applied regular cross-validation method without

optimizing learning parameters.

Thus, this paper extends the previous studies by 1) applying an

advanced machine-learning algorithm, i.e. support vector machines to

improve overall accuracy rates of driver’s cognitive distraction, 2)

extending data sets by adding older drivers’ data sets in addition to the

younger drivers’ sets to overcome the limitations from previous studies,

and 3) employing a nested cross-validation method.

2. Classification Algorithms

A number of classification algorithms have been introduced in

the last decade for detecting cognitive workload. These include

support vector machines,4 and radial basis probabilistic neural

networks.15,17,18 A recent comparative study of classification

performance among probabilistic neural network, support vector

machine (SVM) and logistic regression concluded the SVM showed

the best accuracy.19

SVM (Support vector machine), which is a machine-learning

technique based on statistical learning theory, has been used for pattern

classification and inference of nonlinear relationships between

variables.20,21 Fig. 1 shows the basic principle of a SVM in 2D space.

Binary-class training data D = {(xi, yi)}
l i=1, where xi is a vector

containing multiple features, and yi is a class indicator with value either

-1 or 1, are illustrated as circles and dots in Fig. 1, respectively. SVM

maps the input space to higher dimensional feature space and

constructs a hyperplane, which separates class members from non-

members via a function Φ. The hyperplane yields a nonlinear boundary

in the input space. The function Φ is written in the form of a kernel

function K(xi, xj) =Φ(xi)
T Φ(xj) used in the SVM calculation. When

data are not linearly separable in the feature space, the positive penalty

parameter C allows for training error ε by specifying the cost of

misclassified training instances.22 A positive constant value, C, controls

the trade-off between the separation margin and the number of training

instances that lie on the wrong side of the hyperplane. If C is very

small, an inappropriately large fraction of support vectors may be

derived. In contrast, if C is very large the analysis may over-fit to the

training data instances, which may yield a low level of generalization

ability. The SVM method allows avoiding over-fitting by minimizing

the upper bound of the generalization error23 to produce more robust

models than traditional learning methods, which only minimize training

error.

3. Method

This section contains details of driving simulation experiments for

collecting data sets, and method for constructing support vector

machines model using the collected data.

3.1 Samples

In order to consider age differences, samples for collecting training

and testing data were expanded to older drivers in this paper. 24,25 Thus,

participants required to meet the following criteria: age within 25 to 35

or 60 to 69, driving frequency at least twice a week, self-reported good

health condition and free from major medical conditions, not taking

medications for psychiatric disorders, scored 27 or greater on the mini

mental status exam26 to screen cognitive impairment, and having not

previously participated in a simulated driving study. The sample

consisted of 30 males: 15 in the 25-35-age range (M = 27.9, SD = 3.13)

and 15 in the 60-69 (M = 63.2, SD = 1.74).

3.2 Creation of cognitive workload

An auditory delayed digit recall task was used to create periods of

cognitive demand at three distinct levels. This form of n-back task

requires participants to speak out loud the nth stimulus back in a

sequence that is presented via audio recording.11,14 The lowest level n-

back task is the 0-back where the participant is to immediately repeat

out loud the last item presented. At the moderate level (1-back), the

next-to-last stimulus is to be repeated. At the most difficult level (2-

back), the second-to-the-last stimulus is to be repeated. The n-back was

administered as a series of 30-second trials consisting of 10 single digit

numbers (0-9) presented in a randomized order at an inter-stimulus

interval of 2.1 seconds. Each task period consisted of a set of four trials

at a defined level of difficulty resulting in a series of demand periods

that each lasts two minutes long.

Fig. 1 The principles of SVM Fig. 2 Fixed-based Driving Simulator



3.3 Experimental setup

The experiment was conducted in a fixed-based driving simulator,

which incorporated STISIM Drive™ software and a fixed car cab (see

Fig. 2). The virtual roadway was displayed on a 2.5 m by 2.5 m wall-

mounted screen at a resolution of 1024 × 768. Sensory feedback to the

driver was also provided through auditory and kinetic channels.

Distance, speed, steering, throttle, and braking inputs were captured at

a nominal sampling rate of 30 Hz. Physiological and eye behavior data

were collected using the MEDAC System/3 (NeuroDyne Medical

Corp., Cambridge, MA) and the FaceLAB® 4.6 eye tracking system

(Seeing Machines Ltd., Canberra, Australia), respectively. A display

was installed on the screen beside the rear-view mirror to provide

information about the elapsed time and the distance remaining in the

driving experiment.

3.4 Procedure

As shown in Fig. 3, upon completion of informed consent and a pre-

experimental questionnaire, participants spent 10 minutes of driving

experience and adaptation time in the simulator. The simulation was

then stopped and participants were trained in the n-back task while

remaining seated in the vehicle. In order to minimize the influence of

individual factors, n-back training continued until participants met

minimum performance criteria, i.e. perfect in 0-back and more than

75% of correct answers in 1-back and 2-back tasks. Then each

participant’s baseline performance of n-back task was evaluated.

Followed by 5 minutes rest, participants drove in good weather through

37 km of straight highway for 20 to 25 minutes. During the driving and

n-back task experiment, minutes 5 through 7 were used as a single task

driving reference (baseline). Thirty seconds later, 18 seconds of

instructions introduced the task (0, 1 or 2-back). Each n-back period

was 2 minutes in duration (four 30 second trials). A two-minute rest

(recovery) period was provided before presenting instructions for the

next task. Presentation order of the three levels of task difficulty was

randomized across participants.

3.5 Definition of cognitive workload

The cognitive workload was classified into four categories based on

the complexity of primary and secondary tasks. The secondary task, so

called n-back task, has three levels of difficulty.14 The 0-back task is a

low-level cognitive challenge that is not particularly difficult and not

intended to be significantly stressful. The 1-back condition requires an

additional step up in cognitive load in that an individual must both

correctly recall from short-term memory the item presented previously

as well as entering and holding the new item in memory. It is expected

that the 1-back would have moderate workload on individuals. The 2-

back form of the task requires highest cognitive load to recall from

short-term memory within the n-back task.

Although the cognitive workload was classified into four grades,

i.e., driving only and driving with three levels of n-back task, the

present study used two levels of cognitive workload, i.e. normal driving

and high cognitive workload condition. Normal driving was defined as

driving without any cognitive workload. The high cognitive workload

condition was defined as the durations of driving while performing the

most difficult cognitive task, the 2-back task.

3.6 Input features

Based on the study results of Son et al.,15,17,18,27 Mehler et al.11 and

Reimer et al.,14 six measures from three different domains were

selected as input features to detect driver’s cognitive workload in the

SVM models. They were the standard deviation of lane position

(SDLP) and steering wheel reversal rate (SRR) in the driving

performance domain, heart rate (HR) and skin conductance level (SCL)

in the physiological domain, and the standard deviation of horizontal

gaze (SDHG) and the standard deviation of vertical gaze (SDVG) in

eye behavior.

Each input data was calculated and filtered to remove outliers. The

SDLP was calculated from 0.1 Hz high pass filtered lateral position

data and lane changes were removed using the AIDE project

guidelines.28 The SRR was calculated by counting the number of

steering wheel reversals that have more than 0.1 degree of reversal

angle per minute from the 2 Hz low pass filtered steering wheel angle

data.

The HR was converted from the Inter-beat Interval (IBI) that was

calculated using the Librow’s R-peaks detection algorithm (LibrowTM,

Ukraine). The SCL was measured with a constant current configuration

and non-polarizing, low-impedance gold-plated electrodes. Sensors

were placed on the underside of the outer flange of the middle fingers

of the non-dominant hand without gel.

In order to calculate the SDHG and the SDVG, raw gaze data were

filtered with the following criteria as suggested by an earlier study:14 1)

the FaceLAB’s automated gaze quality index for the left and right eyes

was categorized as optimal, 2) the x-axis position was between -1.5 m

and +1.5 m, the y-axis position was between -1.0 m and +1.0 m, and 3)

the data point was contained within a set of six valid measurements

(approximately 100 ms).

3.7 Model training and cross-validation procedure

In this procedure, data that contained the driving only and data

containing the 2-back task periods were summarized across the 10s-

window without overlapping to form instances. Then, the segmentedFig. 3 Experimental Procedure



instances were normalized using z-score and labeled as ‘not distracted’

for normal driving condition or ‘cognitively distracted’ for high

cognitive workload condition according to the distraction definitions.

In order to construct the SVM models, the Radial Basis Function

(RBF) was chosen as the kernel function:

where xi and xj represent two data points, and γ is a predefined positive

parameter. Using the RBF, we can implement both nonlinear and linear

mapping by manipulating the values of γ and the penalty parameter

C.29,30 In the training procedure, the optimal values of C and γ were

searched in the exponentially growing sequences ranging of 2-5 to 215.

In this study, 360 instances (30 participants * 12 segments) were

randomized and used for training and a cross-validation.

A nested cross-validation was adopted to train and evaluate the

performance of the cognitive workload detection model. The nested

cross-validation method allows the simultaneous optimal selection of

parameters of SVMs and the unbiased estimation of the performance of

the final SVM model. The detailed procedure of the nested cross-

validation was described in Fig. 4 as a pseudo-code.31

The performances of SVMs were evaluated in three aspects, i.e.,

classification accuracy, sensitivity and specificity, using the following

equations:32

  

where, TP = True Positive, TN = True Negative, FP = False Positive,

FN = False Negative (see Table 1)

4. Results and Discussion

4.1 Performance of the SVM Models

The performance of the SVM models was varied from 58.9% to

89.0% depending on the combinations of input features (see Table 1).

Among the SVM models with a single input feature, the heart rate

(HR) showed the best accuracy. The HR-based model detected driver

drive’s cognitive workload with 80.0% accuracy followed by the

standard deviation of vertical gaze (SDVG) with 76.7%. The

effectiveness of the HR to estimate a driver’s cognitive workload has

often been reported by previous studies10,11,27 and this result is

consistent with the earlier findings. One of the authors’ previous

studies using the radial basis probabilistic neural networks (RBPNNs)

with younger driver’s physiological inputs17 showed a slightly

conflicted result, the RBPNN study17 concluded that SCL was the best

predictor of the cognitive workload. However, the performance of the

SCL-based model in this study also showed a moderately high

accuracy of 73.8%. The difference may be caused by the sample

selection and the cross-validation method.

The SDVG-based SVM models also demonstrated promising

performance with 76.7% accuracy. This accuracy is same as the

author’s earlier study18 using the RBPNNs with a 30 second window,

but much higher than the results of the RBPNN with a 10 second

window that is the same window size of this study. Although the

SDVG showed better performance than the standard deviation of

K xi xj,( ) e
γ– x

i
x
j

–

2

=

Sensitivity
TP

TP FN+
-------------------- 100×=

Specificity
TN

TN FP+
-------------------- 100×=

Accuracy
TP TN+

TP FN TN FP+ + +
-------------------------------------------- 100×=

Table 2 Classification accuracy of single and multiple input features

Input Feature SDLP SRR SDHG SDVG HR SCL Driving Gaze Physio.
Gaze &
Physio.

Driving
& Physio.

Driving
& Gaze

SDLP 58.9 75.0 73.8 76.8 79.0 76.7 - 80.8 84.2 89.0 - -

SRR - 71.7 79.2 78.9 81.0 79.2 - 82.5 82.6 88.6 - -

SDHG - - 73.5 79.0 81.5 79.9 80.0 - 86.5 - 87.1 -

SDVG - - - 76.7 82.6 81.1 78.1 - 86.1 - 87.4 -

HR - - - - 80.0 82.9 80.7 86.1 - - - 86.4

SCL - - - - - 73.8 78.9 81.7 - - - 86.3

Driving - - - - - - 75.0 81.7 86.4 - - -

Gaze - - - - - - - 79.0 88.1 - - -

Physio. - - - - - - - - 82.9 - - 88.8

Table 1 Confusion matrix representation

Actual State
Predicted State

High workload
(Positive)

Normal driving
(Negative)

High Workload True Positive (TP) False Negative (FN)

Normal Driving False Positive (FP) True Negative (TN)
Fig. 4 Pseudo-code of a nested cross-validation for performance

estimation and model selection



horizontal gaze (SDHG) in the eye movement domain, the difference

is not significant and the result is not consistent with the previous

studies. Reimer et al.14 and Son et al.27 have reported a statistically

significant effect of cognitive workload has appeared in horizontal gaze

concentration, but no significant effect in vertical gaze concentration.

The results may have been affected by the driving simulator

environment that was used in collecting the training and testing data.

The driving simulator had one screen for the front-view and an

additional display beside the rear-view mirror on the screen to provide

time and distance information. In this particular driving simulator, a

driver’s horizontal gaze dispersion may be relatively small compared to

real world driving due to the absence of side view and the additional

display may increase a driver’s vertical gaze movement. Therefore, the

accuracy of the gaze-based SVM models needs to be validated with a

field operational test data.

The best performance among the multiple input features was

achieved by the combination of the physiology, gaze and SDLP. As

shown in Table 3, the best combination model obtained 89.0%

accuracy, sensitivity of 86.4% and specificity of 91.7%. The high

specificity may reduce false alarms that may annoy to the drivers.

In general, all SVM models with physiological inputs, i.e., HR and

SCL, obtained at least 82.6% accuracy. Especially, the HR played a key

role in increasing increase the accuracy and specificity of the SVM

models. The gaze features showed the next most promising

performance with 79.0% accuracy. The all feature combination based

SVM model was not optimal for the accuracy or specificity. This

research suggested that an optimal model may be formed from the

“best” combination of parameters rather than the inclusion of all

potential parameters.

4.2 Age Difference in Performance

It is important that the input features are not affected by age to

implement the SVM models in a real world application. Thus, this

study extended the data sets to older drivers and evaluated the

performance difference of the SVM models between the younger and

older group’s data. According to the earlier studies,11,14 the SRR, the

SDVG and the SCL were significantly affected by age. As shown in

Table 4, the SDVG showed the highest age difference in accuracy and

specificity, and the largest difference in sensitivity was appeared in the

SRR. In general, the results with younger drivers were better than older

drivers in the driving performance domain, however this was reversed

in the physiological domain. Interestingly, the performance of the

SDHG and the SDVG differed across the age groups in the eye

movement domain. The older group’s performance with the SDVG was

notably higher than their younger peers. From these differing results

with respect to age in the physiology and gaze domains, it is

recommended to use cross-domain measures for improving the overall

robustness in the face of age factors.

5. Conclusions

In this paper, we proposed an algorithm for detecting driver’s

cognitive workload using driving performance, physiology and eye

movement data. Two measures in each domain, i.e., the SDLP and the

SRR for driving performance, the HR and the SCL for physiology and,

the SDHG and the SDVH for eye movement, were considered as

cognitive distraction indices. In order to collect driving data,

participants drove on a highway in a driving simulator and were asked

to complete three different levels of auditory recall tasks. Then, the

driver’s cognitive workload detection algorithm was constructed using

the SVMs. The model performance was optimized and assessed

through the nested cross-validation method. As a result, the proposed

SVMs with the inputs of SDLP, Physiology (HR and SCL) and gaze

(SDVG and SDHG) were able to detect the cognitive distraction with

the highest accuracy of 89.0%.

It is recognized that this study has a limited data set in that the data

was collected in a driving simulator with a straight highway road and

a relatively homogenous traffic scenario. On- road data in a more

diverse set of conditions is needed to fully assess the generality of the

results.
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Table 3 Model performance(single feature & best combination)

Single Input

Model SDLP SRR SDHG SDVG HR SCL

Sensitivity 62.5 67.2 82.8 71.9 77.8 75.0

Specificity 55.3 76.1 64.2 81.4 82.2 72.5

Accuracy 58.9 71.7 73.5 76.7 80.0 73.8

Best Combination

Model
Physio.
Gaze

Physio.
Gaze
SDLP

Physio.
Gaze
SRR

Physio.
Driving
SDHG

Physio.
Driving
SDVG

Physio.
Driving
Gaze

Sensitivity 85.0 86.4 86.7 83.6 85.0 87.5

Specificity 91.1 91.7 90.6 90.6 89.7 90.0

Accuracy 88.1 89.0 88.6 87.1 87.4 88.8

Table 4 Model performance with younger and older group

Model SDLP SRR SDHG SDVG HR SCL

Y
o
u
n
g
er Sensitivity 73.4 76.6 81.3 66.7 79.2 78.1

Specificity 52.1 75.5 65.1 70.8 87.5 78.1

Accuracy 62.8 76.0 73.2 68.8 83.3 78.1

O
ld
er

Sensitivity 62.2 62.2 79.4 76.7 78.3 70.6

Specificity 41.1 77.8 61.7 86.7 72.8 72.8

Accuracy 51.7 70.0 70.6 81.7 75.6 71.7
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